
Near-linear Time Gaussian Process Optimization with Adaptive Batching and Resparsification
Daniele Calandriello∗,†,¶, Luigi Carratino∗,‡, Alessandro Lazaric§, Michal Valko¶, Lorenzo Rosasco†,‡,‖
∗Equal contribution, †LCSL - Istituto Italiano di Tecnologia, ‡Università degli Studi di Genova,
§Facebook AI Research Paris, ¶DeepMind Paris, ‖Massachusetts Institute of Technology

In a nutshell

Gaussian process optimization (GP-Opt) is emerging as a valuable tool
for stochastic black-box optimization (e.g. hyperparameter tuning), slowly
replacing grad student descent. However provably convergent GP-Opt
algorithms (e.g. GP-UCB) suffer from:
- computational bottleneck: O(T 3) time and O(T 2) space
- experimental bottleneck: need feedback at each iteration

We introduce the first general GP optimization algorithm (BBKB) that
is provably scalable, with near-linear runtime O(Td2

eff), no regret, and
also maintains valid posterior variance estimates at all steps.

Gaussian process optimization and GP-UCB

Candidates A = {xi}Ai=1 with xi ∈ RD (or RKHS H)

For t ∈ [1, . . . , T]: (1) select xt+1 = arg maxxi ut(xi)
(2) Receive noisy feedback yt+1 = f (xt+1) + ηt+1
(3) Improve ut+1 for next time

Goal: minimize regret RT =
∑T

t=1 f (x∗)− f (xt) vs. x∗ = arg maxxi f (xi)

ut(x) = µt(x) + βtσt(x)

xt+1 = arg maxx∈A ut(x)

µt(x) = xT(XT
tXt + λI)−1XT

tyt, σ2
t (x) = xT(XT

tXt + λI)−1x

How to improve bottlenecks and still achieve low regret?

sequential vs batch

exact GP vs approximate GP

Sparse GP with dictionary D = {xj}mj=1 of m inducing points

Õ(T3)

sequential batched

exact GP

approximate GP

GP-BUCB
Async-TS

GP-UCB
IGP-UCB

GP-TS

Batch BKB

BKB Õ(T2)

Õ(T)

Our solution:
new adaptive schedule for
- batch-size
- approximation updates

Batch Budgeted Kernelized Bandits (BBKB)

BKB for t = {1, . . . , T − 1} do
for i = {1, . . . , A} do
ũt(xi) = µ̃t(xi,Dt) + β̃tσ̃

2
t (xi,Dt);

end
Select xt+1← arg maxxi∈A ũt(xi);
Set p̃t+1 ∝ [σ̃2

t (x1,Dt), . . . , σ̃2
t (xt+1,Dt)];

Sample Dt+1 ∼ p̃t+1;
end

BBKB At step t start batch and for t′ > t continue selecting
ũt′(xi) = µ̃t(xi,Dt) + α̃tσ̃

2
t′(xi,Dt)

while
∑t′

s=t σ̃
2
s(xs,Dt) ≤ 1.

Main result: BBKB is scalable and no regret

Theorem: Let α̃t ≈
√∑t

s=1 log(1 + 2σ̃2
s−1(x̃s,Ds−1)) +

√
λF. Assume

f ∈ H arbitrary and ‖f‖ ≤ F . Then w.h.p., ∀ t ∈ [T] and all x ∈ A,
σ2
t (x)/2 ≤ σ̃2

t (x) ≤ 2σ2
t (x) and |Dt| ≤ O(deff log(t/δ)),

and BBKB incurs at most regret RBBKB
T ≤ 4RGP-UCB

T

and runs in O(TAd2
eff) time with average batch size P ≥ Ω(T/deff).

adapts to GP’s effective dimension/rank: deff ,
∑T

i=1 σ
2
T (x̃i)

β̃t computable in Õ(Ad2
eff) time replacing worst-case bounds

No assumptions on GP structure (e.g., not only stationary GPs)
No free lunch: worst-case falls back to GP-UCB

DTC is not a GP (not consistent), but now a justified heuristic
Easy extension to infinite A, but how to optimize posterior?

Big batches and rare resparsification with no loss of accuracy?

"Not too big" Lemma: vs "Not too small" Lemma:
valid UCBs batch-size = Ω(t)

Experiments

Cadata dataset (A = 20640, d = 8, T = 10000)

0 250 500 750 1000 1250 1500 1750 2000
t

0

5

10

15

20

25

30

35

40

tim
e

(s
ec

)

Batch-GPUCB
BKB
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

0 2000 4000 6000 8000 10000
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R t
/R

un
if

t

Batch-GPUCB
BKB
Global-BBKB
GlobalLocal-BBKB
GPUCB
async-TS

NAS-bench-101 dataset (A = 12416, d = 19, T = 12000)

Not simply an approximate GP-UCB

Sparse approximation regularizes! New bias-variance trade-off!

[1] Srinivas et al. Gaussian process optimization in the bandit setting: No regret and experimental design. ICML’10 [2] Mutný et al. Efficient high-dimensional Bayesian optimization with additivity and quadrature Fourier features. NeurIPS’18
[3] Kuzborskij et al. Efficient linear bandits through matrix sketching. AISTATS’19 [4] Abbasi-Yadkori et al. Improved algorithms for linear stochastic bandits. NeurIPS’11 [5] Calandriello et al. Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret. COLT’19

