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Motivation Our Contribution Ada-BKB

Gaussian process optimization (GP-Opt) is a successful class of algorithms » a new GP optimization algorithm for continuous X: Ada + BKB Let xp1 be the centroid of the first partition, let Ly = {xp1} and let 7 =0
to optimize a black-box function through sequential evaluations. However, » new early-stopping condition and pruning rule .

for functions with continuous domains, GP-Opt has to rely on either a fixed » theoretical guarantees on cumulative regret and computational time A|gorlthm

discretization of the spac.e, or the 59|ution of a non-convex optimization sub- Algorithm 1 Ada-BKB

problem at each evaluation. We introduce Ada-BKB (Adaptive Budgeted while t < T do

Kernelized Bandit), a no-regret GP-Opt algorithm with adaptive discretiza- Main Results Xh»i:a;ﬂixh(xf)

tions for functions on continuous domains, that provably runs in O(Tzdesz). if f:6¢_1(xp1) < Vp and he < hmax then

Cumulative Regret and Computational Time

Ly 41 = (Lr \ {xn}) Uexpand(xp ;)
else

Problem Setup

yt = f(xp;) + €t (with €¢ noise)
compute fiz 11,011, 1f 4

Ada-BKB gets a cumulative regret,

Given a compact X C RY and a function f : X — R, we want to find Looq=L;
* hmax S ]_ t=t+1
x* € argmax f(x). N L1 = prune(L;)
xe€X Rr =0 (\/Tdeff( T)log(T) N —1 ) if |+L1¢+1| ==0or L;11 == {xp,,,.i;} then
T _ _ break
Goal: to get small cumulative regret R = )  f(x*) — f(x;). Ada-BKEB has time complexity, T=7+1

t=0
BUT: only perturbed function values y = f(x) + ¢ e ~ N(0,0?%)

Main assumption: f € H reproducing kernel Hilbert space (RKHS)

O(T de( T))

where, for every |

Other algorithms (0.7) = min{de(xy), de(parent(xy )} + Vi Vp > sup [f(x) = f(x)

X, X'€Xp
Background Algorithm Computational Cost Cumulative Regret with X ; partition and
3 ~
o CR o§r4 ( o e fie(x) = K(x, X (Re + M) 7Yy, m
. . 3 _ — ~ ~ = 17
Given an discrete set X, a kernel kK and an RKHS H. GP-ThreDS O(T*) max Ge(x) = k(x, x) — k(x, Xe)(K: + M)~ k(Xt, x)
At each time step where K; ; = k(x;, x;) and, let S, be a subset of X,
A » choose x; = argmax i;(x) ke(x, x") = k(x, St)K;k(Sta x')
0.0 1 XEX . . . . . . .
/ B _ A threshold on the number of expansion h,,,« is introduced to avoid infinite
> observe y; = f(x;) + & Experimental results expansions.
» update the upper bound
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With i, defined as in eq. (1). R 102
Time complexity: O(Td2|X|). SO 1 bkbgp ﬁ Let the highest lower confidence bound (LCB) be defined as
Problem: guarantees only with | X| = O(T%)[3]. %100 : — gpucb "EE} 10° [/ ~dabkb [F = m;(x fie(x) — Bt("f't(x).
© S | — adagpuchb XA
. . . . 50 _ — After each iteration, the pruning rule deletes every x € L. s.t.
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o " N t r If after pruning |L;| == 0 or L; = {x;__;} then we can interrupt the
0.25 | 025 | | 0.25 er.l | | Left: average regret. Our algorithm obtain similar performance in execution of the algorithm (early stopping).
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