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Motivation
Gaussian process optimization (GP-Opt) is a successful class of algorithms
to optimize a black-box function through sequential evaluations. However,
for functions with continuous domains, GP-Opt has to rely on either a fixed
discretization of the space, or the solution of a non-convex optimization sub-
problem at each evaluation. We introduce Ada-BKB (Adaptive Budgeted
Kernelized Bandit), a no-regret GP-Opt algorithm with adaptive discretiza-
tions for functions on continuous domains, that provably runs in O(T 2d 2

eff).

Problem Setup
Given a compact X ⊂ Rd and a function f : X → R, we want to find

x∗ ∈ argmax
x∈X

f (x).

Goal: to get small cumulative regret RT =
T∑
t=0

f (x∗)− f (xt).

BUT: only perturbed function values y = f (x) + ε ε ∼ N (0, σ2)
Main assumption: f ∈ H reproducing kernel Hilbert space (RKHS)

Background

BKB
Given an discrete set X , a kernel k and an RKHS H.
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At each time step

I choose xt = argmax
x∈X

ũt(x)

I observe yt = f (xt) + εt
I update the upper bound

With ũt defined as in eq. (1).
Time complexity: O(Td 2

eff|X |).
Problem: guarantees only with |X | = O(T d)[3].

Adaptive Discretizations

The point xh,i indicates the centroid of the partition Xh,i . Given a centroid
xh,i , the splitting procedure produces N partitions with centroids xh+1,j . The
centroid xh,i is called parent of xh+1,j .

xh,i = parent(xh+1,j)

Our Contribution
I a new GP optimization algorithm for continuous X : Ada + BKB
I new early-stopping condition and pruning rule
I theoretical guarantees on cumulative regret and computational time

Main Results

Cumulative Regret and Computational Time
Ada-BKB gets a cumulative regret,

RT ≤ O

(√
Tdeff(T ) log(T )

Nhmax − 1

N − 1

)
Ada-BKB has time complexity,

O(T 2d 2
eff(T ))

Other algorithms
Algorithm Computational Cost Cumulative Regret

GP-UCB O(T 3A) O(
√
TγT)

BKB O(TAd 2
eff) O(

√
TγT log(T ))

AdaGP-UCB O(T 4(N − 1)hmax) O(
√
TγT)

GP-ThreDS O(T 4) O(
√
TγT log2 T )

Experimental results

Left: average regret. Our algorithm obtain similar performance in
average regret to AdaGP-UCB[2] but in less time. GP-UCB and BKB
obtain worse regret because the offline discretizations don’t contain a good
suboptimal optimizer.

Right: computational savings. The red vertical line indicates that the
early stopping condition is reached and we could interrupt the execution at
that time step.

Ada-BKB
Let x0,1 be the centroid of the first partition, let L0 = {x0,1} and let τ = 0

Algorithm
Algorithm 1 Ada-BKB
while t ≤ T do

xh,i = argmax
xi∈Lτ

It(xi)

if β̃tσ̃t−1(xh,i) ≤ Vh and ht < hmax then
Lτ+1 = (Lτ \ {xh,i}) ∪ expand(xh,i)

else
yt = f (xh,i) + εt (with εt noise)
compute µ̃t+1, σ̃t+1, l

∗
t+1

Lτ+1 = Lτ
t = t + 1

Lτ+1 = prune(Lτ )
if |Lτ+1| == 0 or Lτ+1 == {xhmax,i} then

break
τ = τ + 1

where, for every i

It(xh,i) = min{ũt(xh,i), ũt(parent(xh,i))} + Vh Vh ≥ sup
x ,x ′∈Xh,i

|f (x)− f (x ′)|

with Xh,i partition and

ũt(x) = µ̃t(x) + β̃tσ̃t(x)

µ̃t(x) = k̃(x ,Xt)(K̃t + λI )−1yt
σ̃t(x) = k(x , x)− k̃(x ,Xt)(K̃t + λI )−1k̃(Xt, x)

(1)

where Ki ,j = k̃(xi, xj) and, let St be a subset of Xt

k̃t(x , x
′) = k(x , St)K

†
St
k(St, x

′)

A threshold on the number of expansion hmax is introduced to avoid infinite
expansions.

Pruning rule & Early stopping
Let the highest lower confidence bound (LCB) be defined as

l∗t = max
x∈Xt

µ̃t(x)− β̃tσ̃t(x).

After each iteration, the pruning rule deletes every x ∈ Lτ s.t.

It(x) < l∗t
If after pruning |Lτ | == 0 or Lτ = {xhmax ,j} then we can interrupt the
execution of the algorithm (early stopping).
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