Algorithmic Regularization for Fast and Optimal Large-Scale Machine Learning

Luigi Carratino University of Genova

joint work with Alessandro Rudi (INRIA), Lorenzo Rosasco (UniGe, MIT, IIT) Jul, 9th 2019 – SWSL 2019

Learning problem

Let $(x,y) \sim \rho$, $x \in X \subseteq \mathbb{R}^d$, $y \in Y \subseteq \mathbb{R}$.

Learn

$$f_{\mathcal{H}} = \operatorname*{argmin}_{f \in \mathcal{H}} \mathcal{E}(f), \qquad \qquad \mathcal{E}(f) = \int d\rho(x, y)(y - f(x))^2$$

with ρ unknown but given $(x_i, y_i)_{i=1}^n$ i.i.d. samples.

Remarks:

$$\begin{array}{l} \bullet \quad (\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}}) \text{ RKHS with bounded kernel } K \text{ (e.g. } K(x, x') = e^{-\gamma ||x - x'||^2} \text{)} \\ \bullet \quad \mathcal{H} = \overline{\operatorname{span}\{K(x, \cdot) | x \in X\}} \\ \bullet \quad \operatorname{Let} \phi : \mathbb{R}^d \to \mathcal{H}, \text{ then } K(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}} \end{array}$$

Statistics

$$\widehat{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Theorem[Smale, Zhou '05, Caponnetto, De Vito '05]

$$\begin{split} \text{For } \|\phi(x)\|, |y| &\leq 1, \\ \mathbb{E}\underbrace{\mathcal{E}(\widehat{f}_{\lambda}) - \mathcal{E}(f_{\mathcal{H}})}_{excess \ risk} \lesssim \frac{1}{\lambda n} + \lambda. \\ \text{By selecting } \lambda_n &= \frac{1}{\sqrt{n}} \\ \mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}} \end{split}$$

Minmax bound.

► Faster rate under refined assumptions

Optimization

$$\widehat{f}_{t+1} = \widehat{f}_t - \gamma_t \nabla \left(\frac{1}{n} \sum_{i=1}^n (y_i - \widehat{f}_t(x_i))^2 + \lambda \|f_t\|^2 \right)$$

Theorem If $\gamma_t \leq 1$, then

$$\|\widehat{f}_t - \widehat{f}_\lambda\| \lesssim e^{-t\lambda}$$

Computational tricks = (implicit) regularization?

iterations

acceleration

- stochastic gradients
- step-size
- mini-batch
- averaging
- sketching

▶ ...

- subsampling
- preconditioning

Random features

Let f(x) be $f(x) = \langle w, \phi_M(x) \rangle$ where $\phi_M : \mathbb{R}^d \to \mathbb{R}^M$ $\phi_M(x) := \left(\underbrace{\sigma(\langle x, s_1 \rangle)}_{\text{random feature}}, \dots, \sigma(\langle x, s_M \rangle)\right)$

• $s_1, \ldots, s_M \in \mathbb{R}^d$ i.i.d random vectors

•
$$\sigma : \mathbb{R} \to \mathbb{R}$$
 nonlinear function (e.g. $\sigma(a) = cos(a), \sigma(a) = |a|_{+}, ...$)

[Rahimi, Recht '06'08'08]

Link with kernels

Recall

$$f(x) = \langle w, \phi_M(x) \rangle = \sum_{j=1}^M w^j \sigma(\langle s_j, x \rangle)$$

with $s_1,\ldots,s_M\sim\pi$, then

$$\lim_{M \to \infty} \frac{1}{M} \sum_{j=1}^{M} w^j \sigma(\langle s_j, x \rangle) \in \mathcal{H}$$

and

$$K(x,x') = \int \sigma(\langle s,x\rangle) \sigma(\langle s,x'\rangle) d\pi(s)$$

[Neal '95; Rahimi, Recht '07; Cho, Saul '09]

Multi-pass SGD-RF with mini-batching

For $t = 1, \ldots, T$

$$\widehat{w}_{t+1} = \widehat{w}_t - \frac{\gamma_t}{b} \sum_{i=b(t-1)+1}^{bt} \nabla \left(\left(y_{j_i} - \langle \widehat{w}_t, \phi_M(x_{j_i}) \rangle \right)^2 \right)$$

with $J = j_1, \ldots, j_{bT}$ sampling strategy.

Free parameters:

- Step-size γ_t
- Mini-batch size b
- Number of random features M
- Number of iterations T

Computational complexity:

- ▶ Time: O(MbT)
- ▶ Space: O(M)

Related works

- ▶ One pass SGD: from Robbins-Munro '50's... Dieuleveut, Bach '15...
- Multipass SGD: Hardt Recht Singer '16, Rosasco et al. '16
- ▶ SGD with averaging: Dieuleveut, Bach '15, Neu, Rosasco '18, Mücke, Neu, Rosasco 19'
- Sketching for Tikhonov regularization: Rudi, Rosasco '17.
- Multipass SGD + Mini-Batching + Sketching: This work!

SGD with Random Features: Statistics

Theorem (C., Rudi, Rosasco '18) For $||x||, |y| \le 1$ a.s. and t > 1

$$\mathbb{E}_{J}\mathcal{E}(\widehat{w}_{t+1}) - \inf_{w \in \mathcal{H}} \mathcal{E}(w) \lesssim \frac{\gamma}{b} + \left(\frac{\gamma t}{M} + 1\right) \frac{\gamma t}{n} + \frac{1}{M} + \frac{1}{\gamma t}.$$

SGD with Random Features: Statistics

Theorem (C., Rudi, Rosasco '18) If

1. b = 1, $\gamma_t \simeq \frac{1}{\sqrt{n}}$, and T = n iterations (1 pass over the data); 2. $b = \sqrt{n}$, $\gamma_t \simeq 1$, and $T = \sqrt{n}$ iterations (1 pass over the data); 3. b = n, $\gamma_t \simeq 1$, and $T = \sqrt{n}$ iterations (\sqrt{n} passes over the data); and

 $M=\sqrt{n}$

then with high probability

$$\mathbb{E}_J \mathcal{E}(\widehat{w}_T) - \inf_{w \in \mathcal{H}} \mathcal{E}(w) \lesssim \frac{1}{\sqrt{n}}$$

Minmax bound.

Faster rate under refined assumptions

Computational requirements

For $t = 1, \ldots, T$

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \frac{1}{b} \sum_{i=b(t-1)+1}^{bt} \nabla \left(\left(y_{j_i} - \langle \widehat{w}_t, \phi_M(x_{j_i}) \rangle \right)^2 \right)$$

Complexity:

- ▶ Time: O(MbT)
- ▶ Space: O(M)

Complexity for $O(1/\sqrt{n})$ rate:

- ▶ Time: $O(n\sqrt{n})$
- ► Space: $O(\sqrt{n})$

Empirical results

SUSY dataset, $n=6 \times 10^6$

• Same accuracy for $M \ge \sqrt{n}$ • $b = \sqrt{n}$ is the "magic" MB-size

Summing up

- number of passes, step-size mini-batch size and sketching dimension.... all control the test error!
- They introduces an implicit bias hence regularize the solution

Looking ahead: apply/extend these ideas

- Beyond least squares
- Parallelization
- Non convex problems

From random features to subsampling

Similar results can be obtained considering

$$\overline{x}_1,\ldots,\overline{x}_M\subset x_1,\ldots,x_n$$

and

$$f(x) = \sum_{j=1}^{M} K(\overline{x}, x)c_j$$

Back to Kernel Ridge Regression

Let K p.d. kernel and \mathcal{H} corresponding RKHS

$$\widehat{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Complexity: Space $O(n^2)$ Kernel eval. $O(n^2)$ Time $O(n^3)$

Optimal statistical accuracy [Caponnetto, De Vito '05]

Random projections

Consider $\mathcal{H}_M = \operatorname{span}\{K(\tilde{x}_1, \cdot), \dots, K(\tilde{x}_M, \cdot)\} \subseteq \mathcal{H}$ $\widehat{f}_{\lambda, M} = \operatorname{argmin}_{f \in \mathcal{H}_M} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$

 \blacktriangleright ... that is, pick M columns at random

$$\widehat{f}_{\lambda,M}(x) = \sum_{i=1}^{M} K(x, \widetilde{x}_i) c_i$$
$$\widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}) c = \widehat{K}_{nM}^{\top} \widehat{y}$$

Complexity: Space $O(M^2)$

Kernel eval. O(nM)

Time $O(nM^2)$

- Nyström methods (Smola, Scholköpf '00)
- Gaussian processes: inducing inputs (Quiñonero-Candela et al '05)
- Galerkin methods and Randomized linear algebra (Halko et al. '11)

Nyström KRR: Statistics

Theorem[Rudi, Camoriano, Rosasco '15] Under basic assumptions and

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda,M}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim rac{1}{\lambda n} + \lambda + rac{1}{M}.$$

By selecting $\lambda_n = \frac{1}{\sqrt{n}}, M_n = \sqrt{n}$

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}}$$

Same minmax bound of KRR [Caponnetto, De Vito '05].

Computations required for $O(1/\sqrt{n})$ rate

 $\begin{array}{rll} & {\sf Space:} & O(n) \\ {\sf Kernel \ eval.:} & O(n\sqrt{n}) \\ & {\sf Time:} & O(n^2) \\ & {\sf Test:} & O(\sqrt{n}) \end{array}$

Possible improvements:

- adaptive sampling
- optimization

Optimization to rescue

Idea: First order methods

$$c_t = c_{t-1} - \frac{\tau}{n} \left[\widehat{K}_{nM}^{\top} (\widehat{K}_{nM} c_{t-1} - y_n) + \lambda n \widehat{K}_{MM} c_{t-1} \right]$$

Pros: requires O(nMt)

Cons: $t \propto \kappa(H)$ arbitrarily large- $\kappa(H) = \sigma_{\max}(H) / \sigma_{\min}(H)$ condition number.

Preconditioning

Idea: solve an equivalent linear system with better condition number

Preconditioning

$$Hc = b \quad \mapsto \quad \mathbf{P}^\top H \mathbf{P} \beta = \mathbf{P}^\top b, \quad c = \mathbf{P} \beta.$$

Ideally $PP^{\top} = H^{-1}$, so that

$$t = O(\kappa(H)) \quad \mapsto \quad t = O(1)!$$

(Fasshauer et al '12, Avron et al '16, Cutajat '16, Ma, Belkin '17)

Preconditioning Nystom-KRR

Consider
$$H := \widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}$$

Proposed Preconditioning

$$PP^{\top} = \left(\frac{n}{M}\widehat{K}_{MM}^2 + \lambda n\widehat{K}_{MM}\right)^{-1}$$

Compare to naive preconditioning

$$PP^{\top} = \left(\widehat{K}_{nM}^{\top}\widehat{K}_{nM} + \lambda n\widehat{K}_{MM}\right)^{-1}.$$

Baby FALKON

Proposed Preconditioning

$$PP^{\top} = \left(\frac{n}{M}\widehat{K}_{MM}^2 + \lambda n\widehat{K}_{MM}\right)^{-1},$$

Gradient descent

$$\widehat{f}_{\lambda,M,t}(x) = \sum_{i=1}^{M} K(x, \widetilde{x}_i) c_{t,i}, \qquad c_t = \mathbf{P}\beta_t$$
$$\beta_t = \beta_{t-1} - \frac{\tau}{n} \mathbf{P}^{\top} \left[\widehat{K}_{nM}^{\top} (\widehat{K}_{nM} \mathbf{P} \beta_{t-1} - y_n) + \lambda n \widehat{K}_{MM} \mathbf{P} \beta_{t-1} \right]$$

FALKON

- ► Gradient descent → conjugate gradient
- \blacktriangleright Computing P

$$P = \frac{1}{\sqrt{n}} T^{-1} A^{-1}, \quad T = \operatorname{chol}(K_{MM}), \quad A = \operatorname{chol}\left(\frac{1}{M} TT^{\top} + \lambda I\right),$$

where $\operatorname{chol}(\cdot)$ is the Cholesky decomposition.

Falkon statistics

Theorem (Rudi, C., Rosasco '17) For $\|\phi(x)\|, |y| \leq 1$, when $M > \frac{\log n}{\lambda}$,

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M} + \exp\left[-t \left(1 - \frac{\log n}{\lambda M}\right)^{1/2}\right]$$

By selecting

$$\lambda_n = \frac{1}{\sqrt{n}}, \qquad M_n = \frac{2\log n}{\lambda}, \qquad t_n = \log n,$$

then

$$\mathbb{E}\mathcal{E}(\widehat{f}_{\lambda_n,M_n,t_n}) - \mathcal{E}(f_{\mathcal{H}}) \lesssim \frac{1}{\sqrt{n}}$$

Remarks

Same rates and memory of NKRR, much smaller time complexity, for $O(1/\sqrt{n})$:

Related

- EigenPro (Belkin et al. '16)
- SGD (Smale, Yao '05, Tarres, Yao '07, Ying, Pontil '08, Bach et al. '14-...,)
- RF-KRR (Rahimi, Recht '07; Bach '15; Rudi, Rosasco '17)
- Divide and conquer (Zhang et al. '13)
- NYTRO (Angles et al '16)
- Nyström SGD (Lin, Rosasco '16)
- SGD-RF (C., Rosasco '18)

In practice

Some experiments

	MillionSongs ($n \sim 10^6$)			YELP ($n \sim 10^6$)		TIMIT ($n \sim 10^6$)	
	MSE	Relative error	Time(s)	RMSE	Time(m)	c-err	Time(h)
FALKON	80.30	$4.51 imes10^{-3}$	55	0.833	20	32.3%	1.5
Prec. KRR	-	4.58×10^{-3}	289^{\dagger}	-	-	-	-
Hierarchical	-	$4.56 imes 10^{-3}$	293^{\star}	-	-	-	-
D&C	80.35	-	737^{*}	-	-	-	-
Rand. Feat.	80.93	-	772^{*}	-	-	-	-
Nyström	80.38	-	876^{*}	-	-	-	-
ADMM R. F.	-	$5.01 imes 10^{-3}$	958^{\dagger}	-	-	-	-
BCD R. F.	-	-	-	0.949	42^{\ddagger}	34.0%	1.7^{\ddagger}
BCD Nyström	-	-	-	0.861	60^{\ddagger}	33.7%	1.7^{\ddagger}
KRR	-	$4.55 imes 10^{-3}$	-	0.854	500^{\ddagger}	33.5%	8.3^{\ddagger}
EigenPro	-	-	-	-	-	32.6%	3.9°
Deep NN	-	-	-	-	-	32.4%	-
Sparse Kernels	-	-	-	-	-	30.9%	-
Ensemble	-	-	-	-	-	33.5%	-

Table: MillionSongs, YELP and TIMIT Datasets. Times obtained on: \ddagger = cluster of 128 EC2 r3.2xlarge machines, \ddagger = cluster of 8 EC2 r3.8xlarge machines, $\end{Bmatrix}$ = single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU and 128GB of RAM, \star = cluster with 512 GB of RAM and IBM POWER8 12-core processor, \star = unknown platform.

Some more experiments

	SUSY ($n \sim 10^6$)			HIGGS ($n \sim 10^7$)		IMAGENET ($n \sim 10^6$)	
	c-err	AUC	Time(m)	AUC	Time(h)	c-err	Time(h)
FALKON	19.6%	0.877	4	0.833	3	20.7%	4
EigenPro	19.8%	-	62	-	-	-	-
Hierarchical	20.1%	-	40^{\dagger}	-	-	-	-
Boosted Decision Tree	-	0.863	-	0.810	-	-	-
Neural Network	-	0.875	-	0.816	-	-	-
Deep Neural Network	-	0.879	4680^{\ddagger}	0.885	78^{\ddagger}	-	-
Inception-V4	-	-	-	-	-	20.0%	-

Table: Architectures: † cluster with IBM POWER8 12-core cpu, 512 GB RAM, ∂ single machine with two Intel Xeon E5-2620, one Nvidia GTX Titan X GPU, 128GB RAM, ‡ single machine.

Contributions

Best computations so far for optimal statistics

Space O(n) Time $O(n\sqrt{n})$

Other flavours:

- SGD, mini-batching, random features [C., Rudi, Rosasco 18']
- adaptive sampling [Rudi, Calandriello, C., Rosasco 18']
- ▶ In the pipeline: accelerated stochastic methods, distributed optimization
- ▶ TBD: other loss, other regularizers, other problems, other solvers...