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Motivations
Sketching and stochastic gradient methods are two of the most common technigues to SGD with Random Features Remarks
derive efficient large scale learning algorithms. | | |
Faster rates can be achieved under refined assumptions
We study the estimator detined by stochastic gradient with mini-batches and random 1 , | _ _
. : . . ~ o \V, I | Analysis holds for decreasing step-size
features, showing how different parameters, such as number of features, iterations, SGD-RF w41 = wr — 71 b Z (yﬁ Wy P (%z))
step-size and mini-batch size control the learning properties of the solutions. 1=b(t—1)+1 Comparison with Ridge Regression:
with t=1.....7 and sy ~ U(1,0) e same rate of “vanilla” Kernel Ridge Regression (KRR)

Learnlng Settlng e same rate and same number of RF of Random Features KRR [2]

Given (z;,v:)i=, 1.1.d. samples from p, and a linear model with feature map ¢ : X — H Note: one pass over the data is reached after | ] iterations

minimize the expected risk

min &£ (w) E(w) = / (y — wT¢(ﬂ3))2 dp(z,y)

wEH L * Time: O(MbT) (optimality) e Time: O(n+/n)
J anknown eSpace: O(M)
space of models

Comparison with Stochastic Gradient Descent:
Computational Complexity e As M — oo, SGD-RF recovers the same rates and results of

» one-pass SGD [3] » multiple-pass SGD [4,5]

e Space: O(v/n) Note: [3] allows constant step-size by averaging, while SGD-RF by mini-batching

Note: the problem can not be directly solved

[ Experiments
In practice: empirical risk minimization @, = argmin — yi —whod(x;)) + M|wl]? i i | | .
P P weEH N ; ( 7’ ( 7’)) [l ThEOTEtICﬂl AnalySIS Random Fourier Features that approximate the Gaussian Kernel
- - . . Practice validates theory:
Sa\"ng Time Theorem: Under basic assumptions y
( e A number of RF bigger that O(1/n) does not improve accuracy
. . . : : 1 1 -'
Idea: use an iterative solver like stochastic gradient descent LE(Wyy1) — inf E(w) < B | e | e | | . . SUSY " HIGGS
wEH ~ b M n vyt M |
0.28 042
T & 2 . t=1,...,71 *
s6D  wig1 = w, — 4V ( (s — wi B(w)” + Awe?) win - |
= Which is the best parameter choice to have the fastest rate” ® S
Saving Space Corollary: Under basic assumptions, for one of the following conditions © .
L - - - M 1.b=1, v~ L and T = n+/n iterations ( v/n passes over the data); 023, Jn 1000 1500 oo v . .
Idea: map the points into a lower dimensional space with ¢, : X - R | T ny ’ | e of random featurec n° of random features
[ 2 ) |
ERM with RF  @ys,» = argmin Z (i — wTdar(2:))” + Awl|? 2 b =1,y =~ \F,and Tatlons( pass ovithe data) | | B | | | |
weRM N = T T e Bigger mini-batch size requires bigger step-size.
3.b=+/n, v~ 1 and T \/_ |terat|ons ( 1 pass over the data)
§ C——— e e One pass over the data is not enough for batch-size bigger than Vn
Rand font M7 du () ( (T ) (T ))-81,..-,81\4||drandomvectors
andom features mMx)=\(oclx s1),...,0(T Sp | | _ ~ _ - - .
e 5 R — R non linear function 4.b=n, vy~ 1,and T = /n iterations (/n passes over the data); B B
¥ 200 SUSY - Classification Error 0 200 HIGGS - Classification Error 036
random feature w(a:, B ) and M — \/ﬁ 700 700 0358
Note: we have 10.215 m 1 0.354
(3) 1 gﬁ E\/ﬁ 0.352
e The learned model w ' ¢as(x Zw (z's;) is a NN with random weights 2E(Dy) — inf E(w) < —— 5 2 -
J=1 itive definite k | weH \/ﬁ g :ggoo |
oSitlive aertinite Kerne £3000 | - 1Bo91 0.348
- \
e For many example of RF, when M is big qu( = K(x,x2") 200 0 0.34
/ NOte : 0.205 0.342
) More efflment than . L . 1 1 . e A R zstepifze oo
Examples: o \With no mini-batch, the step-size - ST S NG determines the number of passes step-size
s ~ N(0,07) e =22 | | _ _
o (x,8)=cos(z's+b) with ’ ety Oar () Opr () R eT T 202 e Parameter choices 2. and 3. mply lower time complexity
b ~ U(0, 2m) Gaussian kernel References
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